Gene editing can speed up plant domestication-

Star InactiveStar InactiveStar InactiveStar InactiveStar Inactive

Editing just two genes in ground cherries (Physalis pruinosa) produced plants that yielded more and bigger fruit, researchers report October 1 in Nature Plants. Those edits mimic changes that occurred in tomato plants during domestication, bringing the sweet tomato relative a step closer toward becoming a major berry crop, says study coauthor Zachary Lippman, a plant biologist at Cold Spring Harbor Laboratory in New York.

Ground cherries and their close relatives Cape gooseberries or golden berries (Physalis peruviana L.) are grown in many parts of the world, but have traits — such as dropping their fruit on the ground — that make them unattractive for large-scale agriculture.  

“This is a really unruly plant with great potential,” says Harry Klee, a plant geneticist at the University of Florida in Gainesville. The new work serves as a how-to manual for others interested in rapidly domesticating new crops, he says.

Lippman, plant biologist Joyce Van Eck of Cornell University and their colleagues deciphered the ground cherry’s genetic instruction book, or genome, and looked for genes that give domestic tomatoes some of their characteristics. Cutting one gene called SELF-PRUNING 5Gwith the gene editor CRISPR/Cas9 created a mutation that caused the plants to stop making shoots and leaves and to instead produce more flowers and fruit. The altered plants yielded 50 percent more fruit on each shoot than unaltered ground cherries. Snipping a second gene, CLV1, caused the fruit to grow 24 percent heavier.

Breeders might make mutations in the same genes by irradiating seeds or treating them with chemicals, but it would take decades, says Lippman, who is also a Howard Hughes Medical Institute investigator. Gene editing accelerated the process, compressing the time to just a couple of years. The berries aren’t yet fully domesticated — they still drop fruit on the ground — but the researchers plan to make other modifications.

Researchers might not be able to use the same tricks for plants without well-studied domestic relatives, says Martin Mascher, a computational geneticist at the Leibniz Institute for Plant Genetics and Crop Plant Research in Gatersleben, Germany. “CRISPR is a very precise tool, but it also requires precise knowledge,” he says. Science Bulletin.