Chatelain Nursery belongs to Antoine’s father, Laurent, but the younger Chatelain manages the technology. He sees driverless tractors as another means of improving farm work.
“There are tractors already using GPS out in the field, but what we are seeing is that not all tasks can be automated with current technologies,” Chatelain says. “I believe artificial intelligence and other systems can greatly improve what we can do, and I think, in the end, we will only be required to do only part of the job. The other part of the job will be reduced greatly by AI, autonomous tractors and other vehicles.”
Specifically, Chatelain envisions a future where advancing technologies help enhance decision making. The farm will never fully drive itself, he says. Instead, the value proposition of AI will continue to be performing intensive, repetitive tasks, creating space for new robotics-related jobs to develop.
If the current generation of agricultural robotics is any indication, the technology needs to be finessed before a driverless tractor becomes a viable option. From Chatelain’s experience, the biggest issue is reliability.
“Sometimes the robot works great, and we don’t see any issues with the work,” he says. “The robot does its job, and it is a great success. But at a moment’s notice, the machine can hurt your crops. You may have some issues that can attributed, in part, to wrong settings being entered or environmental variables that are not in kind with what the robot can do.”
Chatelain says the cost of ownership can also be preventative. Once purchased, however, the systems require little human supervision and are very inexpensive to run.
“For us, driverless tractors and robots are really about reliability and the trust we can put in those systems,” he says.
When it’s possible, the farmer can help create a safe environment by putting barriers and signage around the areas where autonomous machines will be operating.
Belarus shows autonomous tractor prototype
It’s Possible if Robot Manufacturers Can Deliver Proper Training
Naïo Technologies’ CEO Aymeric Barthes believes agricultural robots are already making a massive impact on the farming industry. There are already an abundance of robots that work on vegetables and vines. It’s only a matter of time, he says, before driverless tractors disrupt the status quo even more.
“I think the most important thing we have to keep in mind is safety,” he says, adding that this is where proper training comes into play.
“When using robots, you need to really train a lot with the robots to understand how they work, to understand how to integrate the robot in the fields, how to set up the robot in the right configuration,” Barthes says. “We have technical support integration during the time when you use the robot, so we have a lot of things to do too, and the training is really key.”
This means not only training the end user, but also the distributors. When customers understand the technologies, they are more likely to use them and spread the word. Distributors that know how to work the robots operate with a more powerful means of selling the product and alleviating potential fears.
On the issue of safety, driverless tractors have a seemingly quicker pathway to the market than, say, fully autonomous cars. Driverless cars operate in the public sphere. The biggest benefit farms provide on the road to implementation and adoption is privacy.
“Agricultural robots work in fields away from public areas,” Barthes says. “When it’s possible, the farmer can help create a safe environment by putting barriers and signage around the areas where autonomous machines will be operating. This is very different from driverless cars because you cannot privatize the public area.”
In addition to managing potential safety concerns, Naïo Technologies, the innovator behind the Oz, Ted and Dino weeding robots, focuses on profitability. Robots, Barthes says, must be profitable in order to succeed. One way that agricultural machines can increase their value is by addressing the power issues. Driverless tractors will need to address battery-related problems, too, and that’s precisely why companies like Naïo Technologies are already thinking ahead.
The battery, especially in the application of agricultural robotics, is subjected to shock vibration, pretty harsh environmental conditions, in terms of the weather, rain, and direct sunshine.
It’s Possible if the Technology is Robust
“When you have batteries on the robot, you need to charge the batteries, and if you have to, you have to send someone to charge the batteries, you have a problem,” Barthes says. “You have an issue with the profitability of the model. We need to make that aspect of the agricultural robot autonomous like the vacuum robot in the house. So, we designed a trailer with solar panels to charge the robots autonomously.”
As the General Manager Solutions for VARTA Ag, Gordon Clements cites batteries and power as examples of the important role technology plays in developing effective autonomous machines. After all, the batteries that power autonomous tractors and other agricultural robots need to be durable, intelligent and properly optimized.
“From a power perspective, farming without a tractor driver is already possible,” Clements says. “The challenge is to consider the battery and also the charger and the availability of charge.
“The notion of charging a battery is probably the key to success because it’s not only in the robot that we need artificial intelligence and machine learning,” he continues. “The big challenge is really combining the charger and the battery together and bringing artificial intelligence and machine learning directly to the battery, so that we can optimize the battery and the charger as we go forward.”
Currently, VARTA provides two types of solutions. The first is a custom battery that is designed especially for a client that is building a robot with specific dimensions and power needs. This battery will be unique, expensive, and sold exclusively to that client. For startups, VARTA offers a less expensive solution. Option two is an off-the-shelf model that is a simple, reliable, and safe power supply.
With batteries, safety is a key concern from the beginning. All of the materials that go into making a battery have safety standards they must pass. Then, Clements says, the components must be put together in a safe way. An automated production line is used to minimize deviations in the product quality and ensure the battery can operate within its safe window.
“The battery, especially in the application of agricultural robotics, is subjected to shock vibration, pretty harsh environmental conditions, in terms of the weather, rain, and direct sunshine,” Clements says. “All of these things need to be considered in terms of the packaging and how the battery is actually housed, and provided you get all of these things correct and your vendors able to deliver these things to you, then the safety issues can be managed in such a way that it represents a very small risk to the end user, if any risk at all.”
When a battery needs to be replaced, the goal is to replace the modules instead of the batteries themselves. This, Clements says, will enable the farmers to safely change the power sources on the farm without expert assistance. An even better option is to use wireless changing solution. VARTA recently created one with power supply company IN2Power.
“It’s much more relaxed,” Clements says. “You can manage the charging regime, and if we can learn what the power consumption looks like and what the profile of the power consumption looks like and what the charging regime looks like, we can basically collect that data, and we can optimize them for each individual application or even for each individual farmer.”
It’s also essential for the batteries and the robots to speak to one another. Not all agricultural robots nor driverless tractors willl talk to a standard battery module, Clements says, so a universal gateway is necessary. VARTA has already developed one.
“We can basically implement any protocol that the end customer needs,” he says, “and give him a completely integrated suite without having to deviate from the standard battery module and lose the advantages that he gets from having a standard module.”